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Figure 1. SCALE system and its application scenarios: (a) three load sensitive modules and a controller (b) Shelf augmentation with Touch Detection (c) 
Workbench augmentation with Object Status Tracking (d) Floor augmentation with Motion Pattern Recognition 

ABSTRACT 
SCALE provides a framework for load data from distributed 
load-sensitive modules for exploring force-based interaction. 
Force conveys not only the force vector itself but also rich 
information about activities, including way of touching, ob-
ject location and body motion. Our system captures these 
interactions on a single pipeline of load data processing. Fur-
thermore, we have expanded the interaction area from a flat 2D 
surface to 3D volume by building a mathematical framework, 
which enables us to capture the vertical height of a touch point. 
These technical invention opens broad applications, including 
general shape capturing and motion recognition. We have 
packaged the framework into a physical prototyping kit, and 
conducted a workshop with product designers to evaluate our 
system in practical scenarios. 

Author Keywords 
Force-based Interaction; Tangible Interaction; Load Sensitive 
Modules; 3D Touch; Activity Recognition 

INTRODUCTION 
Force conveys fundamental information in Human-Object In-
teraction, including force intensity, its direction, and object 
weight [12] - information otherwise difficult to be accessed 
or inferred from other sensing modalities. When force is cap-
tured during interaction, a wide range of activities can be 
reconstructed such as way of touch, movement of objects and 
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patterns of body motion. Therefore, it is important to explore 
the design space of Force-Based Interaction, which we define 
here as ’contact based dynamic interaction between two ob-
jects or between an object and the human body based on force 
vector direction and amount’. 

Force-based interaction is involved at different scales in terms 
of the intensity of loaded force and the size of the interaction 
area. For instance, force-based interaction can range from 
actions such as drawing minute letters on a piece of paper 
(∼1g, 1mm), to handling tools on a workbench (∼1kg, 10cm), 
to dancing in a room (∼100kg, 10m). Even though researchers 
have already tackled each respective task, [20, 27], it is ideal 
if interaction designers are able to explore the wide range of 
force-based interactions within a single integrated framework. 

In this work, we propose a framework of processing load data 
from load sensitive modules to cover the three main categories 
of force-based interaction, including Touch Interaction, Object 
Status Tracking, and Motion Pattern Recognition, as shown 
in Fig.1. The modularity of our system expands two key 
aspects of load sensitive applications: scalability in weight 
tolerance by adding a number of modules to fit the target load 
capacity on demand, and variability in spatial configuration 
by reconfiguring the spatial placement depending on their 
respective objectives. 

Specifically for Touch Interaction, we have expanded the inter-
action area from a flat 2D surface to 3D volume by developing 
a new algorithm, which is freed from the geometric shape 
information of an object, which is required in the previous 
method [11]. With a broadened set of applicable objects, this 
function allows us to utilize the information of a touch point in 
3D space for further analysis, telling us which part of an object 
is currently being touched, or what kind of shape outline the 
object has. 
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Figure 2. The concept of SCALE: (left) Modularity and Force Retrieval (right) Load Data Processing enables three types of functions: Touch Interaction, 
Object Status Tracking and Motion Pattern Recognition. 

In addition to the algorithm improvements, we have imple-
mented this framework into a physical prototyping kit with 
compact hardware and a GUI designed for novices. We ad-
ditionally conducted a workshop with corporate designers 
and engineers to explore the application space enabled by the 
system, and evaluated its utility. 

Our contributions described in this paper include; 

• An architecture and design space for load sensitive mod-
ules to allow a range of force-based interactions, including 
touch interaction, object status tracking and motion pattern 
recognition. 

• A new algorithm expanding interaction range from 2D to 
3D above a load sensitive surface based on an inverse-matrix 
framework without prior shape knowledge. 

• Technical implementation of hardware and GUI, and sum-
marized findings from our workshop with corporate practi-
tioners to explore the application space and to evaluate its 
utility. 

RELATED WORK AND APPROACHES 
The sensing technology for detecting the physical interactions 
between humans and objects is one of the primary research 
agendas in HCI. A number of contact sensing techniques using 
non force-based methods have been introduced, including 
vision-based [2, 14, 15], IR based [9], capacitive sensing [6, 
16, 23, 28], swept frequency capacitive sensing [10, 25], EM 
based [33], microphone [13] and acoustic based method[21]. 

Among the techniques stated above, force-based sensing meth-
ods have the notable advantage of direct capturing of the con-
tact force [31]. In the context of HCI, several force-based 
methods have been investigated, including Piezoelectric [7], 
and force-sensitive registers [5, 22]. In terms of scalability 
in weight, the methods with load cells show a wide range of 
applicability due to its high tolerance in maximum force [3, 
19]. 

For the load-based methods, we have categorized the function-
ality into three parts, including Touch, Object and Activity. On 
the load-based approach, many systems have been proposed 

for touch detection purposes [20, 26, 30]. This approach natu-
rally expands to variations of touch, including tap, press, drag 
and draw, however, the interaction area of these systems is 
constrained onto a 2D surface. Notably, INTACT pushes the 
interaction area to a 2D surface in 3D volume by assuming 
prior shape knowledge of the object on the geometrically-
constrained surface [11]. Preliminary formulation of our ap-
proach is proposed previously [32], and we improved the al-
gorithm in terms of mathematical stability with regularization 
terms, together with added design framework and workshop 
study. 

Detection, or identifying objects, is another critical domain in 
the load-sensitive method. As the foundation of this category 
is regarding objects, the concept of Weight as ID conveys an 
essence that precise measurement of weight can be useful 
for identifying objects due to its occurrence in daily life [4]. 
Localization of the target has been a hot topic from fields such 
as Biology [24, 34] and Robotics [1, 17]. 

In addition to Touch and Object, load-based activity recog-
nition has been investigated for many years. Context-aware 
systems have developed in combination with the algorithms of 
classifying signals [20, 26, 27]. Especially, the pose estimation 
for the human body has been a growing field [8, 29]. 

Among such broad applications on the load-based approach, 
our system as a prototyping tool kit unifies all the three appli-
cation domains, including Touch, Object and Activity, into a 
single framework of load data processing. With the technical 
breakthrough being for detecting 3D touch, we expand the ap-
plication field to everyday objects, freed from the requirement 
of having the geometric shape model in advance. 

SCALE: A TOOL KIT FOR FORCE-BASED INTERACTION 

Design Space 
SCALE is a prototyping tool kit to encourage interaction 
designers and engineers to explore force-based interaction, 
which is uniquely enabled by capturing direct force informa-
tion, with the architecture composed of load sensitive modules 
and a framework of load data processing. The key feature of 
SCALE is its modularity, aiming at scalability and variability, 
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so that the users can increase the number of modules to be ca-
pable of accepting heavier load on demand, and place modules 
to reconfigure the spatial arrangement to fit their objectives, as 
shown in Fig.2 (left). 

Furthermore, the modularity enables the system to cover a 
wide range of force-based interaction with the support with 
three functions in the load data processing, including Touch 
Interaction, Object Status Tracking and Motion Pattern Recog-
nition, as shown in Fig.2 (right). Here we describe the design 
requirements for each process as following: 

Touch Interaction 
The system should be capable of capturing the interaction 
between a human and objects, and particularly touch is the 
common interaction seen in a wide range of situations. If 
the system captures both of the force intensity of a touch and 
the position of the touch, this information can be utilized for 
further analysis. For example the system could infer which 
part of an object is currently being touched. Furthermore, if the 
system has less constraints on an object, such as restrictions 
on a shape, the system could be applicable to many purposes. 
Therefore Touch Interaction of SCALE is designed to capture 
various types of touch interactions happening on 2D surfaces 
or in 3D volumes, freed from the shape constraint. 

Object Status Tracking 
The system should be capable of handling a large set of light 
and heavy objects in a single manner. A pen with 10 grams and 
an adult with 60 kg would represent the scalability seen around 
our life. Therefore Object Status Tracking has a function to 
track the object position and weight. By calculating total 
weight and center of mass, the five different status of an object 
can be classified: pick, put, move, increase and decrease. 

Motion Pattern Recognition 
The system should be capable of capturing what people are 
doing on a table, or how people are moving their body on a 
floor. When people walk or stretch, it causes different signal 
patterns on load sensors. So we designed Motion Pattern 
Recognition as a framework for recognizing different activities 
based on the signal pattern. Our simplest scheme is composed 
of feature extraction, and the support vector machine can 
distinguish between different user-defined activities. 

On top of these processes, the user can develop their own appli-
cations in accordance to their purposes. Since this application 
space uniquely enabled by force-based interaction is thought 
to be broad, it is useful if the scope of the application space 
is being disclosed as a list of potential scenarios. Therefore 
we figured out the scope by having a workshop with corporate 
designers and engineers, as we describe the detail in the latter 
part of this paper. 

System Architecture 
The system architecture of SCALE is illustrated in the block 
diagram shown in Fig.3. There are three hardware components: 
modules, controller and host computer. Each module contains 
three-axis load cells and its peripheral circuits to transmit load 
data to controllers. All module data in the system is sent to 
one unified controller and pre-processed with a simple noise 

Figure 3. Architecture of SCALE: (left) Load sensitive modules and its 
controller (right) Applications on top of the Load Data Processing archi-
tecture on a host computer 

filtering. Since the raw data from load cells are sometimes 
polluted with sporadic saturated signals, we eliminate the 
outliers by applying a simple threshold on the absolute value 
of the raw data. 

The host computer receives raw load data from a controller 
through a USB serial bus. If we have N modules, s.t. N ≥ 3, 
we receive an array of 3N load data. This load data is sent to 
the signal processing core called Load Data Processing and 
the system retrieves the force and its intersection as shown in 
Fig.2. This force information is exploited by following three 
different pipelines: Touch Detection, Object Status Tracking 
and Motion Pattern Recognition. After these three go through 
load data processing, the results are utilized to make user-
defined applications. 

LOAD DATA PROCESSING 

Force Line Retrieval 
A force line is the key element of the architecture for the load 
data processing, which is mathematically represented as a 
set of force f and intersection a as shown in Fig.2. Here we 
describe how to retrieve a force line from raw load data. We 
assume the sets of measured force fi, sensed at i-th load module 
(i = 1,2, ...,N). For simplicity, we could assume that all the 
sensors are placed at pi on the same z = 0 plane. The touch 
force f and its torque τ is derived as f = ∑i fi and τ = ∑i pi × fi 
by definition. 

Here, the line of action for manual touch is expressed as x = 
a + pd, parameterized by scalar p. The normalized direction 
vector d is d = f/|f| and the anchor point is a0 = f × τ/|f|2. 
Since we can take an arbitrary point along the line as the 
anchor, we obtained the intersection a as the anchor point 
intersecting with the modular plane, where a = a0 − a0z d. Ondz 
this formulation, the scalar p becomes regularized by being 
zero at all times when the point is on the z = 0 plane. 

Touch Interaction 
We provide the algorithm to detect the touch point on a 2D 
surface or 3D object on load sensitive modules, as shown in 
Fig.4. Here especially, we describe a unique algorithm of 3D 
Touch Detection, which exploits the unsteadiness of a hand 
during touch interaction. We assume enough rigidity in the 
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Touch Detection (c) Touch Classification Objects (right) Database Manipulation 

object, but it does not have to be composed of a single uniform where I3 is a 3x3 unit matrix. 
material. Our framework accepts multi-material objects (e.g. �� 
a wooden desk with metal legs), as long as they convey force 
from a touch point to the sensors without internal dispersion. 

2D Touch Detection 
As illustrated in the previous section for Force Line Retrieval, 
we used the intersecting point a between the force line and 
z = 0 plane as the touch point, as shown in Fig.4(a). By con-
straining the existence area onto z = 0 plane geometrically, we 
can solve the mathematical ambiguity along the force line. 

Another type of geometric constraint is investigated in a prior 
project called INTACT [11]. Instead of the z = 0 plane stated 

x 
[I3 −d] = [a] (1)p 

This equation is apparently under-determined, so we must 
make the equation over-determined in order to calculate the 
touch point x = [x y z] by least square minimization. The 
touch point x can be assumed to be constant during a touch, 
and the system obtains different force lines x = at + ptdt , 
where the discrete time stamp is denoted as t. When we collect 
the most recent T data during the touch, the matrix equation 
mentioned above naturally expands in the manner below: 

above, as the geometric constraint on the force line, they in- ⎤⎡ ⎡ ⎤troduced the 2D surface envelope of an object. This approach x⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎦ 

a1⎥⎥⎥⎥⎥⎥⎦ 

I3 −d1 0 · · · 0was clever enough to expand the interaction area from a 2D y 
z 
p1 
... 

⎥⎥⎥⎦ 

... 

... 

⎢⎢⎢⎣ 

I3 0 −d2 · · · 0 
.... . 

.... 
... 

... 

⎢⎢⎣ 
surface to a 2D envelope in 3D volume, however, it is still less 
scalable since this approach requires prior shape information (2)= 

and its orientation of the object on the surface in advance. 
That means it is difficult to expand the application range of I3 0 0 · · · −dT aT pTthe method to an object with an unknown shape. 

3D Touch Detection 
To address the problem stated above, we propose an algorithm 
to localize the touch point in 3D space without any geometric 
constraints, with focus on the unsteadiness of a human hand. 
Even though our approach is still constrained on the 2D surface 
envelope of an object as well, this approach outstands since 
it does not require any prior shape information and can be 
applicable to any rigid object. 

The key insight of our solution lies in the fact that when we 
touch an object with our hand, the touch is never stable. As 
illustrated in Fig.4 (b), when we aggregate the several recent 
lines they should have slight differences in direction. By 
looking at these lines, we can find the touch point as the most 
possible intersecting point of all the lines. Instead of assuming 
a geometric constraint, our approach equivalently introduces 
the temporal continuity of human touch. This assumption is 
thought to be valid when human touch is much slower than 
the frequency of load sensing, such as 80 Hz sensing with the 
sped-up ADC, which we introduced in the implementation 
section. 

3D Touch Algorithm 
Here we describe the detail of the algorithm to localize the 
3D touch. Firstly for simplicity we transformed the equation 
for a force line x = a + pd into the form of a matrix equation, 

Here we abbreviate the equation as DX = A for simplicity, 
where D ∈ R3T×T+3, X ∈ RT+3 and A ∈ R3T . Even though 
this equation has the worse condition number in terms of the 
inverse problem framework since the force lines are thought 
to be quasi-parallel, we can solve the equation by the support 
of appropriate regularization terms. Finally, we reach the 
least-squares solution X by using the Moore-Penrose pseudo-
inverse matrix method. On this framework, the solution x 
tends to be constrained around the origin of the space, and 
slightly gets closer to the surface under the influence of the 
regularization on pi as well. 

Note that here we introduced generalized Tikonov regulariza-
tion, rather than the standard Tikonov method with a uniform 
regularization parameter λ , to obtain a stable solution X by 
reducing the effect of sensing errors, which has introduced in 
a multi-modal sensing method [18]. This is because the reg-
ularization parameters, λx for x and λp for pi, have different 
physical dimensions, such as x as a spatial position in mm 
and pi as a dimensionless scalar. We experimentally adopted 
20 for T , 0.1 for λx and 0.01 for λp. Here we finally reach 
the touch point x = [X1 X2 X3] as picking the first three 
components in X: 

X = (DT D+ diag(λx 
2 , λx 

2 ,λx 
2 ,λp 

2 , · · · ,λp 
2))−1DT A (3) 
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Figure 6. Load sensitive modules: (left) Modules with a 3d printed case, 
a detachable connector and a rubber for slip prevention (right) a 3d axis 
load cell and a peripheral circuit 

Touch Point Classification 
The touch classification algorithm is shown to classify an 
immediate touch to a corresponding registered touch point. 
It takes T samples, typically 0.25 sec or more, to register a 
touch point as shown above. However, with the classification 
algorithm the system can detect the touch to registered points 
immediately with only a single sample of force line. 

We will classify the green force line as the most possible 
registered point shown in Fig.4 (c). There are two steps of 
selection: Cylindrical Search and Direction Similarity. For the 
first step of Cylindrical Search, we will ignore all of the distant 
registered points from the force line with the threshold radius r. 
For the second step of Direction Similarity, we will calculate 
the inner product of normalized directions between input force 
line and that of the registered point. The appropriate parameter 
r heavily depends on the application, yet we generally adopt 
30 mm for the threshold radius. 

Object Status Tracking 
To detect an object with weight and position and identify its 
status from load signals, there are two steps of load processing. 
The first step is called Stability Check, where the system deter-
mines the weight and position of a new object or the removal 
of an existing object. The second step called Database Ma-
nipulation is where the system accesses the internal database 
to identify the type of action. The core concept of the second 
part is Weight as ID insight, which claims weight information 
is useful to distinguish two or more different objects on a scale 
with required precision [4]. 

Stability Check 
In the first part of Object Status Tracking, we focus on weight 
data wi = fiz, which is the equivalent z-component of load 
from each module. Here we have wtotal = Σwi. To check the 
emergence or disappearance of objects, the system needs to 
distinguish Stable status, where every raw load data is almost 
static, from Unstable status. This stability check is conducted 
through simple thresholding by subtracting the slow LPF-ed 
(low pass filter) from the fast LPF-ed data. 

stability = slow-LPF(wtotal) − fast-LPF(wtotal) 

If stability is small enough, it means the objects on the surface 
are Stable. This stability has a trade-off with response of the 
system. We experimentally adopted 2 grams as the threshold 
value for stability. Also, LPF is implemented as the expo-
nentially weighed moving average, with the filter strength α 

Figure 7. Interactive GUI for SCALE: (Left) It shows a current touch 
point and registered points for Touch Detection (Right) It shows the ob-
jects with its position and weight for Object Status Tracking 

at 0.04 for slow-LPF, and 0.25 for fast-LPF. Once the status 
is classified to Stable, the center of total weight xtotal can be 
calculated as xtotal = Σwixi/Σwi, where xi is the position of 
i-th module. 

Database Manipulation 
In the second part of Object Status Tracking, the system han-
dles the internal database and reflects the result to SCALE 
GUI, as shown in Fig.5. If the detected total weight wtotal is 
above zero, the object is to be labelled as put. If the weight is 
not above zero, the object is labelled as pick. In either case, 
the objects are then added to the database. In Fig.5, the newly 
detected object #4 has the same weight as that of object #2, 
which is picked. Here these two objects are identified as the 
same, and merged into object #4. This operation is called 
move. If the new object #5 appears on the same position as the 
existing object #3, the system subtracts the weight from that 
of the existing object #5. This is decrease of the weight. The 
same procedure will apply for increase. 

In our practical implementation, since the system faced errors 
in weight and position we need to set a tolerance to identify 
the values. We experimentally applied thresholds to identify 
two slightly different values to one value. As a result, we 
adopted 5 grams for the weight threshold and 3 cm for the 
position threshold. 

Motion Pattern Recognition 
Here we describe the pipeline to distinguish two or more 
activities from each other based on load signals. It is out 
of our scope to construct a pipeline to build general Motion 
Pattern Recognition framework, so we drew from activities 
that follow the same raw signal with periodic patterns. 

In our pipeline, the incoming raw signals are converted into a 
feature vector, which expresses a specific type of motion by 
feature extraction. The user can choose any feature extraction 
method, including fast fourier transform, average, standard 
deviation and etc. The feature is fed to be classified by a 
support vector machine (SVM) algorithm. 

Specifically for our applications, we record the force and 
torque vectors for 1 sec with 30 Hz sampling rate, and then 
we derived the standard deviation in each component as a 6 
dimensional feature vector. Also we adopted the fine Gaussian 
kernel for the detailed algorithm for classification. 
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Figure 9. Classification and analysis of application scenarios from cor-
porate designers and engineers 

SCALE PROTOTYPE 

Modular Hardware 
The overall SCALE architecture is illustrated on Fig.3. We 
designed two types of hardware to maximize usability of the 
entire system: modules and a controller. 

Each module contains a three-axis load cell (FNZ100N, Fors-
entek.inc) with a load capacity of 10 kg, and three amplifiers 
(HX711) with analog-digital converters in the fastest mode at 
80 Hz. The module is cuboid with an 90 x 90 x 35 mm form 
factor. To make the entire module compact enough to fit on 
the palm of your hand, we designed an original PCB and put 
all of these elements inside of a 3d-printed cabinet, as shown 
in Fig. 6. To maximize the grip between the module and floor 
or object, we put layered rubber onto both sides of the module 
surface. 

The load sensitive modules are to be connected to a single 
controller with ethernet cables, which has a detachable and 
regularized connector so that a user can easily reconfigure the 
number and the placement of modules. A single controller 
is capable of being connected with 8 modules at maximum, 
which leads to scalability in weight tolerance and variability in 
spatial configurations. A controller contains a micro processor 
(Teensy 3.6) to aggregate and pre-process all of the raw data 
from the modules, and transmit them to the host computer. 

Software GUI 
All of the software composed of real time signal processing 
and Graphical User Interfaces (GUI) is implemented on the 
open-source library (openFramework) by C++, as shown in 

Fig.7, except the Motion Pattern Recognition feature, which is 
implemented on Matlab environment. 

The GUI provides three different primitive modes, including 
Touch Detection, Object Status Tracking, and Motion Pat-
tern Recognition (only for capturing signals), and the user 
can develop an integrated system on top of these three basic 
functions. For all primitive modes, the user is capable of in-
teractively registering a current touch point or object to the 
database and selectively serialize them for further analysis for 
other applications. 

WORKSHOP FOR EXPLORING APPLICATION 
We conducted a SCALE hands-on workshop to evaluate the 
utility and to explore potential applications which we had 
never expected. The workshop procedure was designed in a 
way participants can accomplish prototyping their ideas and 
present their narratives with the developed demonstrations. 

Designing Workshop 
With the support of a product corporation, 12 designers and 
8 engineers attended the workshop and were divided into 4 
teams to evenly distribute expertise in each group. There 
were three sessions in the workshop. The first 2-hour slot 
was designed to brainstorm new application scenarios. The 
participants were asked to come up with as many small use 
cases possible, to then merge them into a larger concept. The 
second session was 6 hours of hands-on participation to de-
velop functional applications with the SCALE development 
kit. After providing detailed instructions to use the kit, each 
team that is composed of 5-6 people started to collaborate with 
colleagues to prototype their own ideas. We concluded with a 
one hour session to present the developed ideas and prototypes 
and to receive feedback from peers. 

Exploring Application Space 
We have compiled the ideas that corporate designers and en-
gineers developed from the brainstorming session into Fig. 9. 
To catch the core interests of participants, we classified the 
ideas into six categories: Health-care, Surveillance, Cooking, 
Entertainment, Home and Learning. Among a range of promis-
ing scenarios, we picked some notable ideas worth sharing: 
(1) monitoring one’s health through the analysis of posture 
changes while sitting, walking and sleeping; (2) tracking ac-
tivity of pets or growth of babies and plants; (3) controlling 
home devices, including speakers, lights and air, through di-
rect contact with furniture, walls or floor, rather than through 
digital interfaces. In addition to these ideas, from the user’s 
perspective we received comments that mention a guideline on 
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Figure 10. Demonstration for Touch Detection: (a) Virtual Interface on Physical Objects (b) Embedded Usage Tracker (c) General Shape Capturing with a 
tripod as a target (d) a close-up picture of captured shape of the tripods 

Figure 11. Demonstration for Shape Capturing: The system classifies the 
type of a package based on weight and its size. 

how to develop or implement each idea on top of our software 
pipeline, and the best use cases for Touch Interaction where 
the system becomes the best from a practical point of view 
among all sensing technology. 

From the hands-on session, we had four different functional 
prototypes, as shown in Fig. 8. We briefly describe them in 
the following list: 

• Group A: The tangible music composer is implemented 
on Object Status Tracking, and allows the user to play and 
mix up music based on the placement of different types of 
objects on specified disk locations, as shown in Fig. 8(a). 

• Group B: The interactive story-telling with voiced charac-
ters is designed for children to breathe life into their favorite 
toys through a pre-recorded voice-over triggered by touch 
interactions, which is implemented on Touch Detection and 
Object Status Tracking, as shown in Fig. 8(b). 

• Group C: A fish pointing system for future aquarium 
utilizes the 3D Touch Detection technique to select a spe-
cific fish swimming in the middle of a large tank with the 
assumption that the 3D position of all fish are tracked by 
computer vision, as shown in Fig. 8(c). This application 
provides detailed knowledge of the selected fish, such as 
the name, species, habitat and food, by touching on the load 
sensitive glass window. 

• Group D: The last application is the posture-aware floor 
for Yoga practitioners, designed to identify individuals 
and analyze their posture and to allow the system to advise 
the individual on how to modify a post for safe practice, as 
shown in Fig. 8(d). 

Evaluating Utility 
To analyze the utility of the toolkit from a viewpoint of practi-
cality, we conducted the subjective evaluation by distributing 
a questionnaire after the workshop. The questions were along 
the lines of, "How did you feel about SCALE as a ubiquitous 
sensitive system?" by using Likert’s five points scale from 
"Very Good" to "Very Bad" and, "What are the pros and cons 
of the toolkit?" through open response. We received answers 
from 10 participants. The resulting scores from the first ques-
tion are 4.6 / 5.0(Average), 5.0(Median) and 0.66(SD). 

Regarding the comments from the second question, the posi-
tive comments are as follows: "It’s really useful to be able to 
sense a variety of different things about the physical state of 
objects or people using a surface and invisible sensor" (Female, 
Industrial Designer), "The interface is intuitive" (Male, Chem-
ical Engineer) and "Detecting not only the single touchpoint 
but a series of touchpoints that translate into an activity" (Fe-
male, Experience Designer). Among the negative comments 
were: "The threshold of SCALE should be adjusted so that 
people can act by elbow, body and so on" (Male, Cognitive 
Psychologist), "The necessity of detection range and UI for 
ease to control" (Male, Software Engineer) and "Accuracy 
across large surfaces, sensitivity across multiple touch points 
at different densities" (Female, Experience Designer). 

The results of the questionnaire and brainstorming session 
as shown in Fig.9, which allow us to consider the following 
points. Firstly, we can see that an advantage of SCALE is the 
capability to recognize a wide variety of Touch Interaction 
with invisible forces. Secondly, SCALE is expected to use its 
Motion Pattern Recognition for grasping multiple interaction 
touch points. Finally, improvements on the versatility and 
application of SCALE are needed. 

On the other hand, we found a issue regarding the constrain 
of the number of sensor module. While the reconfigurability 
of sensor modules made it easy for participants to quickly 
customize the layout of the modules, our prototype was con-
strained to use three module. This limitation made it me-
chanically unstable for some of the large scale interaction 
prototypes (e.g. body gesture detection). We plan to improve 
our User Interface software and force vector calculation al-
gorithms to accommodate multiple (more than three) sensor 
modules placements. 
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Figure 12. Demonstration for Object Status Tracking: (a) Retail Automation enables to capture object movement and liquid consumption (b) Smart 
Workspace is monitoring the location and usage of the tools 

SCALE APPLICATIONS 
Reflecting on the concluding remarks from the workshop, we 
identified 4 application areas where we felt that SCALE could 
have a potential impact - either as a useful enhancement to 
an established application or a novel application, uniquely 
enabled by our approach: 

• making everyday objects and surfaces force sensitive 
• capturing the general shape of an object by touching it 
• locating objects, including liquids, through weight identifi-

cation 
• making home fixtures an activity tracking platform (eg. 

floors) 

In the rest of this section we propose a few exemplary applica-
tions for each category, shedding light on the utility and scope 
of our sensing approach. 

Volume Slider on PC Monitor 
If everyday objects can be sensitive to touch, including touch 
position, direction, and intensity, they can configure functions 
in productive ways. The canonical example would be a PC 
monitor with a user-defined touch point, as shown in Fig. 10(a). 
When a user touches the top-right corner, the audio volume 
changes from low to high according to pressing force. A user 
can also assign a power button just next to the mute button, 
since the system can differentiate two overlapped registered 
points with the classification algorithm. 

Shelf Usage Tracker 
In addition to enhancing a PC monitor, making everyday ob-
jects force sensitive can be useful for objects with no feedback 
system inside. A user can easily augment a tool shelf contain-
ing different types of screws into a trackable activity tool by 
putting only three modules beneath the shelf or table surface, 
as shown in Fig. 10(b). When a user opens the third drawer 
and grabs some screws, the quantity and the type of screws 
are distinguished immediately. 

Shape Capturing By Touch 
Our 3D touch algorithm allows a user to capture the general 
shape of an object, like a notebook PC, by touching its outer 
points. After a user repeatedly touches multiple points around 
the object, the detected points are connected, and a contour of 
the object is captured, as shown in Fig.10(c). 

Since our system is capable of capturing the general shape 
of an object from only load data, the system classifies an 
object into the user-defined categories based on its weight and 

Figure 13. Demonstration for Motion Pattern Recognition: The system 
classifies four different activities: (a)stand (b)stretch (c)walk (d)wave 

estimated size, as shown in Fig.11. This could be useful for 
the application requiring simultaneous acquisition of weight 
and rough shape, including the measurement of packages at 
postal offices, or the airport counter to check-in the bags for 
flight, to estimate its cost and rough volume. 

Retail Automation 
On top of the object status detection mode, combined with 
an external database of product information, it is possible to 
prototype an automated checkout system on a load sensitive 
table as shown in Fig. 12(a). Recently, this type of application 
has been well-investigated on machine-vision systems, yet our 
load sensitive approach is adding an essential value of weight-
based interaction, including selling-by-weight. In addition 
to discrete objects, liquids or granular products are under 
coverage of the SCALE system. A customer can take as much 
coffee as they want, and be charged according to the exact 
amount of consumption, since the change in weight is captured 
with its position. 

Smart Workspace 
The workbenches or tables enhanced by load sensitive modules 
are becoming smart enough to track the usage and positions of 
tools, like a handy drill, as shown in Fig. 12(b). The system 
remembers the previous position of a handy drill, so that the 
user can indicate the current location of the tool through other 
display techniques. Additionally, if the user forgets the place 
where the drill should be returned, the system will notify you 
of the location by searching in its database. 

Posture Estimation on a load sensitive floor 
Once load sensitive modules are embedded beneath the room 
floors, the surface immediately becomes capable of motion 
pattern recognition. From the different wave shape of load 
signals, the system classifies the type of movement (running) 
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Figure 14. Results from Technical Evaluations: (a) Horizontal Accuracy 
from Object Status Tracking (b) Vertical Accuracy from 3D Touch Detec-
tion (c) Confusion Matrix for Motion Pattern Recognition 

and displays a caution to stop running inside the room, as 
shown in Fig. 13. Further analysis including affection infer-
ence or user recognition could be implemented on top of the 
load processing framework we have proposed in this paper. 

TECHNICAL EVALUATION 
Here we provide the performance of our prototype we experi-
mentally evaluated to support the viability of the system. We 
setup the measurement on accuracy and precision concerning 
spatial position, and conducted two different experiments for 
the horizontal plane and the vertical axis, as shown in Fig. 14. 

The horizontal accuracy is measured on xy plane, especially 
related to 2D touch detection or object localization. As shown 
in Fig. 14(a), we achieved less than 1 cm accuracy in the 
prototype, tested with the three different weights (300, 600, 
900 gram) to check the weight consistency of the algorithm. 

The vertical accuracy is measured along the z axis to evaluate 
3D touch point detection, shown in Fig. 14(b). We put a fixed 
size shelf on the SCALE platform, and keep touching a point 
on each surfaces for 1 sec. We repeatedly obtain the estimated 
height for 10 times. In the figure, we illustrated the tested 
height as a small red dot and the standard error as a bigger red 
circle. At most we have 7cm accuracy at the height of 50 cm. 
While the error seemingly expands according to the height, it 
would be useful to distinguish two different surfaces in a shelf. 

Also, as shown in Fig.14(c), we classified four motion patterns 
according to the proposed pipeline, and evaluated the accu-
racy of the prediction by making a confusion matrix. For the 
specific four different body motion, the prototype successfully 
classified them with more than 90 % accuracy. 

DISCUSSION AND LIMITATION 

Multi-touch Inability 
Our system is not designed to accept multi-touch input in par-
allel to other load sensitive systems. If two different people 
are interacting on the surface or handling the objects simul-
taneously, the data processing framework would fail. This 
is because as shown in Fig.2 we combine all of the signals 
from load cells into one force line at the very beginning of the 
processing pipeline. Thanks to the modularity of our system, 
we can apply different modules beneath two areas where a 
user would like to separately detect multi-touches. 

Database 
An additional database about product, which is composed of 
product name, sale price, or materials would be useful to build 
wider applications, especially for Object Status Tracking. For 
example, our basic system stores the set of (weight, position) 
as shown in Fig.5. Once we assign the initial relation between 
weight and product, or position and product, the system is 
capable of tracking all changes during its execution. 

Speed 
This system has 80 Hz throughput of touch point detection, 
yet we are facing an unavoidable latency of at least 0.25 sec, 
since the system requires this for the acquisition of a bundle of 
quasi-parallel action lines, and it usually takes more than 20 
samples. Although our system could apply to 3D input, there 
are limitations in expanding to temporal critical applications, 
such as making instant musical instruments with pieces of 
cardboard. 

Scalability 
We can deploy a much larger system, such as a load sensitive 
floor on an architecture scale, with the advantage of area and 
weight scalability. Thanks to the modularity of our system, 
we can put as many modules as a user requires to meet the 
maximum load requirement. If the user exceeds the load 
tolerance of the system, they have another option of using 
higher-capacity load cells, such as ones with 100kg tolerance, 
in turn sacrificing the minimum distinguishable weight on the 
platform. 

CONCLUSION 
We proposed a load processing framework with load sensitive 
modules for enhancing force-based interaction, and explored 
its design space with scalable and variable architecture. The 
workshop with corporate designers shows a range of appli-
cations and the utility of a modular prototyping kit with the 
algorithm including 3D touch detection. We envision the 
SCALE framework provide ubiquitous interactive surfaces 
with scalable load sensitive architecture to capture scalable 
Force-based Interactions of everyday activities for further anal-
ysis of human object interaction. 
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